Line adsorption in a mean-field density-functional model
نویسندگان
چکیده
منابع مشابه
Mean - field dynamical density functional theory
We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini Bettolo Marconi and Tarazona [J. Chem. Phys. 110, 8032 (1999)], supplied by an equilibrium excess free energy functional that i...
متن کاملGeneralized potentials for a mean-field density functional theory of a three-phase contact line.
We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [Phys. Rev. E 85, 011120 (2012)], the three minima of these potentials form a small triangle located arbitrarily within the Gibbs triangle, which is more realistic for ternary fluid systems. We multiply linear fu...
متن کاملMean-field density functional theory of a three-phase contact line.
A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large distances from the contact line. We employ a triangular grid and use a successive overrelaxation method to find numerical solutions in the entire domain...
متن کاملDensity functional theory model of adsorption deformation.
Molecules adsorbed in pores cause elastic deformations of the solid matrix leading to either contraction or swelling of the material. Although experimental manifestation of adsorption-induced deformation in clays, coals, carbons, silicas, and other materials has been known for a long time, a rigorous theoretical description of this phenomenon is lacking. We report the nonlocal density functiona...
متن کاملElectronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations
The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Physics
سال: 2006
ISSN: 0026-8976,1362-3028
DOI: 10.1080/00268970600958574